Historia

HISTORIA RAPIDA DE LAS MATEMATICAS

Las matemáticas empiezan con el conteo. Sin embargo, no es razonable sugerir que el conteo de la antigüedad era matemáticas. Se puede decir que las matemáticas empiezan solamente cuando se empezó a llevar un registro de ese conteo y, por ello, se tuvo alguna representación de los números.


Babilonia

En Babilonia, las matemáticas se desarrollaron a partir del 2000 a. C. Antes de esto, durante un largo periodo había evolucionado un sistema numérico posicional con base 60. Esto permitió representar números arbitrariamente grandes y fracciones y se convirtió en los cimientos de un desarrollo matemático más fuerte y dinámico.



Problemas 

Problemas numéricos tales como el de las tripletas pitagóricas (a,b,c) con a2 + b2 = c2 fueron estudiados desde al menos el 1700 a. C. Los sistemas de ecuaciones lineales fueron estudiados en el contexto de resolver problemas numéricos. Las ecuaciones cuadráticas también fueron estudiadas y estos ejemplos llevaron a una especie de álgebra numérica. También se estudiaron problemas geométricos relacionados con figuras similares, área y volumen y se obtuvieron valores para p. 


La Base Matemática

La base matemática babilónica fue heredada a los griegos y el desarrollo independiente de las matemáticas griegas empezó alrededor del 450 a. C. Las paradojas de Zenón de Elea condujeron a la teoría atómica de Demócrito. Una formulación más precisa de conceptos los llevó a darse cuenta de que los números racionales no bastaban para medir todas las longitudes. Surgió entonces una formulación geométrica de los números irracionales. Estudios sobre áreas condujeron a una forma de integración. La teoría de las secciones cónicas muestra una cima en el estudio de las matemáticas puras de Apolonio. Muchos otros descubrimientos matemáticos surgieron de la astronomía, por ejemplo, el estudio de a trigonometría. 


El mayor progreso matemático 

El mayor progreso griego en las matemáticas se dio entre el 200 a. C. y el 200 d. C. Después de esa época el progreso continuó en los países islámicos. Las matemáticas florecieron en especial en Irán, Siria e India. Este trabajo no igualó los avances hechos por los griegos pero además de los suyos propios, preservó las matemáticas griegas. Desde alrededor del siglo XI, Abelardo de Bath, y después Fibonacci, llevaron las matemáticas islámicas y sus conocimientos de las matemáticas griegas de regreso a Europa. 



Los grandes adelantos 

Los grandes adelantos matemáticos en Europa reiniciaron a principios del siglo XVI con Pacioli y después Cardán, Tartaglia y Ferari con la solución algebraica de ecuaciones cúbicas y cuárticas. Copérnico y Galileo revolucionaron las aplicaciones de las matemáticas en el estudio del universo. 



El progreso en el álgebra 

El progreso en el álgebra tuvo un importante efecto psicológico y el entusiasmo por la investigación matemática, en particular del álgebra, se extendió desde Italia a Stevin en Bélgica y Viète en Francia.



El siglo XVII 

El siglo XVII vio a Napier, Briggs y otros ampliar enormemente el poder de las matemáticas como una ciencia para calcular con el descubrimiento de los logaritmos. Cavaliere hizo progresos hacia el cálculo con sus métodos infinitesimales y Descartes añadió el poder de los métodos algebraicos a la geometría. El avance hacia el cálculo continuó con Fermat, quien, junto con Pascal, inició el estudio matemático de la probabilidad. Sin embargo, el cálculo sería el tema de mayor relevancia que evolucionó en el siglo XVII. 



Newton 


Newton, edificando sobre el trabajo de muchos matemáticos anteriores a él, tales como su maestro Barrow, convirtió al cálculo en una herramienta que impulsó el estudio de la naturaleza. Su trabajo era rico en nuevos descubrimiento que mostraban la interacción entre las matemáticas, la física y la astronomía. La teoría de la gravedad de Newton así como su teoría de la luz, nos llevan hasta el siglo XVIII. Sin embargo, debemos mencionar también a Leibniz, cuyo acercamiento mucho más riguroso al cálculo (a pesar de no ser aún totalmente satisfactorio) puso las condiciones para la labor matemática del siglo XVIII más que el de Newton. La influencia de Leibniz sobre los muchos miembros de la familia Bernoulli fue importante para hacer crecer la fuerza del cálculo y la variedad de sus aplicaciones.











HISTORIA DE LAS MATEMATICAS

La historia de las matemáticas es el área de estudio de investigaciones sobre los orígenes de descubrimientos en matemáticas, de los métodos de la evolución de sus conceptos y también en cierto grado, de los matemáticos involucrados. El surgimiento de la matemática en la historia humana está estrechamente relacionado con el desarrollo del concepto de número, proceso que ocurrió de manera muy gradual en las comunidades humanas primitivas. Aunque disponían de una cierta capacidad de estimar tamaños y magnitudes, no poseían inicialmente una noción de número. Así, los números más allá de dos o tres, no tenían nombre, de modo que utilizaban alguna expresión equivalente a "muchos" para referirse a un conjunto mayor.

El siguiente paso en este desarrollo es la aparición de algo cercano a un concepto de número, aunque muy incipiente, todavía no como entidad abstracta, sino como propiedad o atributo de un conjunto concreto.​ Más adelante, el avance en la complejidad de la estructura social y sus relaciones se fue reflejando en el desarrollo de la matemática. Los problemas a resolver se hicieron más difíciles y ya no bastaba, como en las comunidades primitivas, con solo contar cosas y comunicar a otros la cardinalidad del conjunto contado, sino que llegó a ser crucial contar conjuntos cada vez mayores, cuantificar el tiempo, operar con fechas, posibilitar el cálculo de equivalencias para el trueque. Es el momento del surgimiento de los nombres y símbolos numéricos.
Antes de la edad moderna y la difusión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz solo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son la tablilla de barro Plimpton 322 (c. 1900 a. C.), el papiro de Moscú (c. 1850 a. C.), el papiro de Rhind (c. 1650 a. C.) y los textos védicos Shulba Sutras (c. 800 a. C.). En todos estos textos se menciona el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.

Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.​ La matemática en el islam medieval, a su vez, desarrolló y extendió las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media. Desde el renacimiento italiano, en el siglo XV, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, han ido creciendo exponencialmente hasta el día de hoy.


Ref: Wikipedia - Historia de las Matematicas



ABSTRACT

HISTORY OF MATHEMATICS
The history of mathematics is the area of ​​study of research on the origins of discoveries in mathematics, of the methods of the evolution of their concepts and also, to a certain degree, of the mathematicians involved. The emergence of mathematics in human history is closely related to the development of the concept of number, a process that occurred very gradually in primitive human communities. Although they had a certain capacity to estimate sizes and magnitudes, they initially did not have a notion of number. Thus, the numbers beyond two or three, had no name, so they used some expression equivalent to "many" to refer to a larger set.

The next step in this development is the appearance of something close to a concept of number, although very incipient, not yet as an abstract entity, but rather as a property or attribute of a concrete set.For further, the advance in the complexity of the structure social and its relations was reflected in the development of mathematics. The problems to be solved became more difficult and it was no longer enough, as in the primitive communities, to just tell things and communicate to others the cardinality of the counted set, but it became crucial to count increasingly larger sets, quantify time, operate with dates, allow the calculation of equivalences for barter. It is the moment of the emergence of the names and numerical symbols.

Before the modern age and the spread of knowledge throughout the world, written examples of new mathematical developments came to light only in a few scenarios. The oldest available mathematical texts are the Plimpton clay tablet 322 (c.1900 BC), the Moscow papyrus (c.1850 BC), the Rhind papyrus (c.1650 BC) and the Vedic texts Shulba Sutras (c.1800 BC). In all these texts the Pythagorean theorem is mentioned, which seems to be the oldest and most extended mathematical development after basic arithmetic and geometry.

Traditionally it has been considered that mathematics, as a science, arose in order to make calculations in commerce, to measure the Earth and to predict astronomical events. These three needs can be related in some way to the broad subdivision of mathematics in the study of structure, space and change.

Egyptian and Babylonian mathematics were extensively developed by Hellenic mathematics, where methods were refined (especially the introduction of mathematical rigor in demonstrations) and the issues of this science were broadened: Mathematics in medieval Islam, in turn , developed and extended the mathematics known by these ancestral civilizations. Many Greek and Arabic texts of mathematics were translated into Latin, which led to a later development of mathematics in the Middle Ages. Since the Italian Renaissance, in the fifteenth century, new mathematical developments, interacting with contemporary scientific discoveries, have been growing exponentially to this day.

Ref: Wikipedia - History of Mathematics

No hay comentarios.:

Publicar un comentario